
Study Design for Implementation Science

Justin B. Moore, PhD, MS, FACSM Division of Public Health Sciences Wake Forest School of Medicine

Objectives

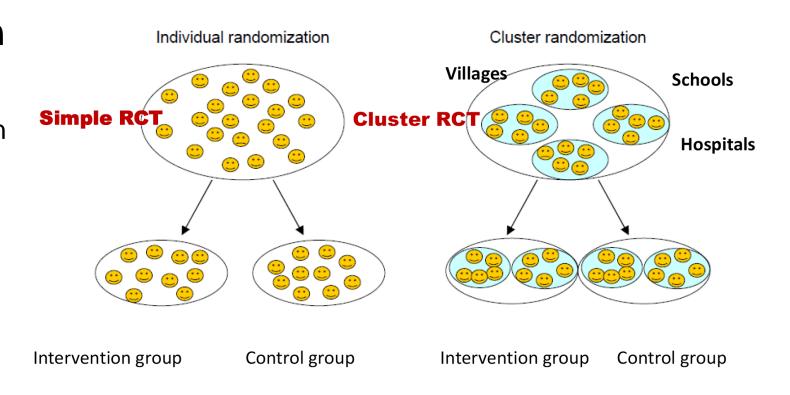
- By the end of the lecture, learners will be able to:
 - Describe an array of of IS study designs
 - Identify the strengths and limitation of IS study designs

*These dissemination and implementation stages include systematic monitoring, evaluation, and adaptation as required.

Figure 1

Traditional translational pipeline from preintervention, efficacy, effectiveness, and dissemination and implementation studies.

Study Designs


Examples of study designs

- New implementation strategy versus usual-practice implementation design
 - Cluster RCTs
- Head-to-head randomized implementation trial design
 - Hybrid designs
- Factorial designs for implementation
 - multiphase optimization strategy implementation trials
 - Sequential, Multiple Assignment, Randomized Trial (SMART)
- Within- and Between-Site Comparison Designs
 - Stepped wedge
 - Dynamic wait-listed design

New implementation strategy versus usualpractice implementation design

- Often comparing active dissemination or implementation to usual practice in naturally occurring clusters
- Employ a cluster randomized trial design

Head-to-head randomized implementation trial design

- Testing of one(or more) implementation strategy vs. another (or others)
- May employ a hybrid design

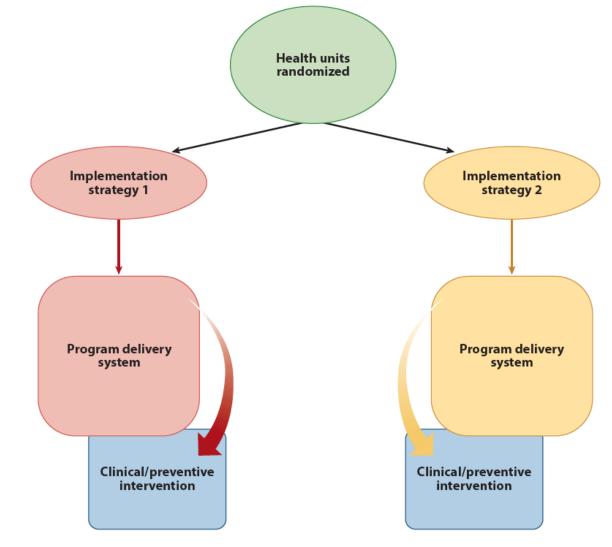
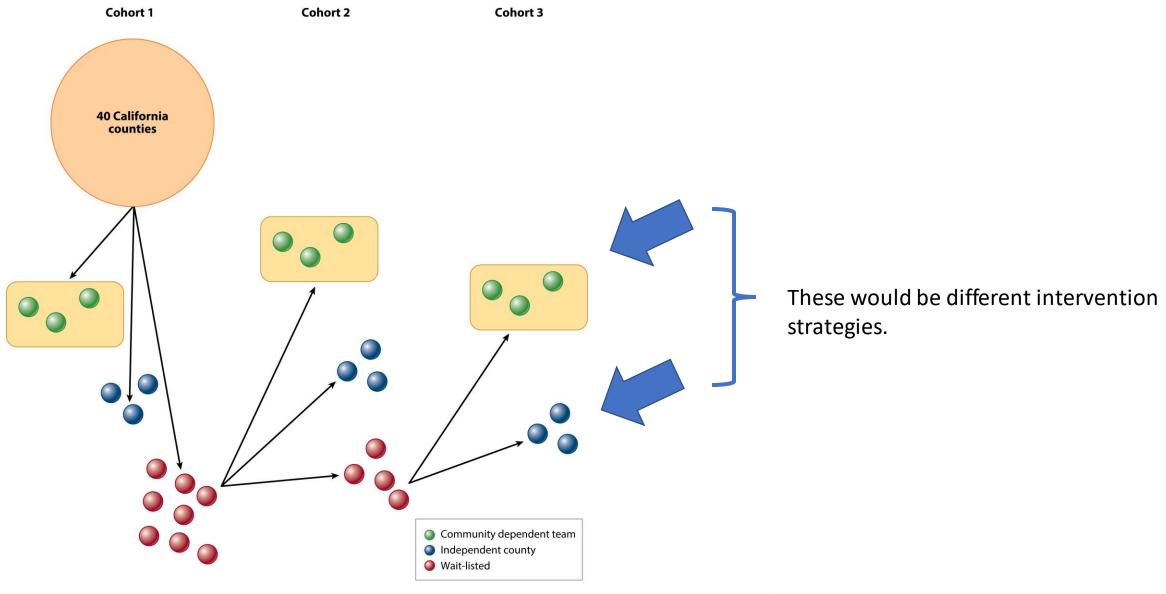


Figure 2

Focus of research in a head-to-head randomized implementation trial with identical clinical/preventive intervention and different implementation strategies.

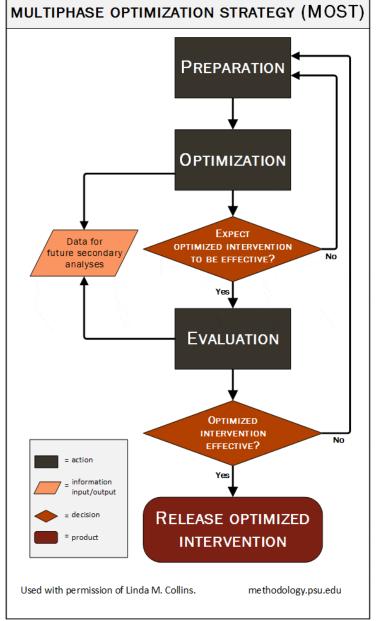


Hybrid Implementation/Effectiveness Designs

Study Characteristic	Hybrid Trial Type 1	Hybrid Trial Type 2	Hybrid Trial Type 3
Research aims	Primary aim: determine effectiveness of a clinical intervention	Coprimary aim*: determine effectiveness of a clinical intervention	Primary aim: determine utility of an implementation intervention/strategy
	Secondary aim: better understand context for implementation	Coprimary aim: determine feasibility and potential utility of an implementation intervention/strategy	Secondary aim: assess clinical outcomes associated with implementation trial
Research questions (examples)	Primary question: will a clinical treatment work in this setting/these patients? Secondary question: what are potential	Coprimary question*: will a clinical treat- ment work in this setting/these patients? Coprimary question: does the implementa-	Primary question: which method works better in facilitating implementation of a clinical treatment?
	barriers/ facilitators to a treatment's widespread implementation?	tion method show promise (either alone or in comparison with another method) in facilitating implementation of a clinical treatment?	Secondary question: are clinical outcomes acceptable?

Hybrid Dosign Characteristics and Key Challenges

Brown CH, et al. 2017.
Annu. Rev. Public Health. 38:1–22


Figure 3 Design to assign 40 counties in California to an independent county or community development team implementation strategy and time (cohort) using a randomized rollout design; 11 counties in Ohio were separately randomized in a fourth cohort to the same two implementation strategies (not shown).

Factorial designs for implementation

- Multiphase optimization strategy trial (MOST)
 - An engineering-inspired framework for development, optimization, and evaluation of multicomponent behavioral, biobehavioral, and biomedical interventions.

http://www.methodology.psu.edu/

Figure 1.

Factorial Design

	Factor			
Condition	Training	Website	Technical assistance	
1	Υ	Υ	Υ	
2	Υ	Υ	N	
3	Υ	N	Υ	
4	Υ	N	N	
5	N	Υ	Υ	
6	N	Υ	N	
7	N	N	Υ	
8	N	N	N	

Factorial Design

	Factor			
Condition	Training	Website	Technical assistance	
1	Υ	Υ	Υ	
2	Υ	Υ	N	
3	Υ	N	Υ	
4	Υ	N	N	
5	N	Υ	Υ	
6	N	Υ	N	
7	N	N	Υ	
8	N	N	N	

Factorial Design

	Factor			
Condition	Training	Website	Technical assistance	
1	Υ	Υ	Υ	
2	Υ	Υ	N	
3	Υ	N	Υ	
4	Υ	N	N	
5	N	Υ	Υ	
6	N	Υ	N	
7	N	N	Υ	
8	N	N	N	

Factorial designs for implementation

- Sequential, Multiple Assignment, Randomized Trial (SMART)
 - Involves multistage randomizations where the site-level implementation process can be modified if unsuccessful
 - eg, re-randomizing no-responding units

Within- and Between-Site Comparison Designs

a

Time	1	2	3	4
Cohort A	0	X*	Χ	Х
Cohort B	0	0	X*	Х
Cohort C	0	0	0	X*

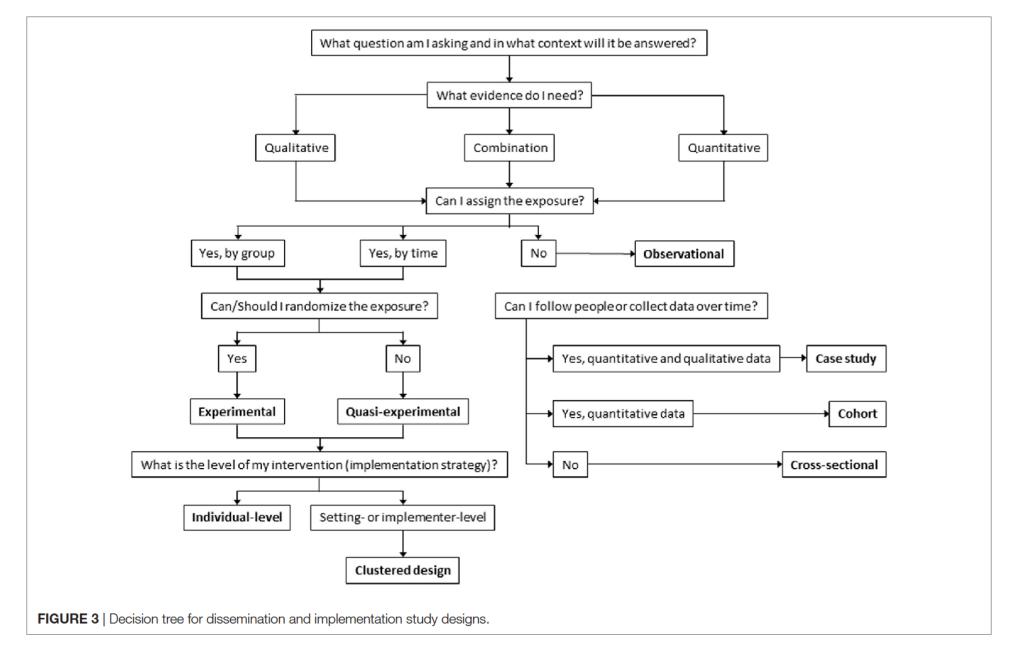
Stepped wedge

b

Time	1	2	3	4
Cohort A	0	X*	Х	Х
	0	Υ*	Υ	Υ
Cohort B	0	0	X*	Х
	0	0	Y*	Υ
Cohort C	0	0	0	X*
	0	0	0	Υ*

Dynamic wait-listed

Figure 4


Schematics of three rollout randomized designs that determine the timing of changes from usual practice, startup or continuation of one or more implementation strategies.

⁰ Implementation as usual

X*, Y* Introductions on new implementation strategies

X, Y Continuation of strategies over extended periods of time

Summary

- A lot of research design options available
- Many are pragmatic by nature (or necessity)
- Models and research designs often used concurrently, "nested" within each other
- Have considerable implications for power calculations, sampling, statistical analyses, and external validity of results

Resource

EXPLORE V / RESEARCH V / CONNECT V

> Implementation Science at UW > The UW Implementation Science Resource Hub > Research > Study Design

Overview of Study Designs in Implementation Science

Implementation science seeks to improve the adoption, adaptation, delivery and sustainment of evidence-based interventions in healthcare, and central to this goal is understanding how interventions are delivered effectively in the context of the 7 P's.

Research designed to evaluate the impact of these contexts takes many forms, and design selection is critical to capturing data in a manner that appropriately addresses your research question or questions.

Implementation research largely attends to external validity, whereas most randomized efficacy and effectiveness research designs emphasize internal validity.

Doing Research

Frame Your Ouestion

Pick a Theory, Model, or Framework

Identify Implementation Strategies

Select Research Method

→ Select Study Design

Choose Measures

Get Funding

Report Results

Given these differing focal points, a debate exists in the field as to the role of randomized design in implementation research and the relative merit of quantitative, qualitative, and mixed methods designs.

https://impsciuw.org/implementation-science/research/designing-is-research/

Questions?

Thank you.